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Statistics of the cumulative phase of microwave radiation in random media
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We determine the cumulative phase of microwave radiation transmitted through a sample of randomly
positioned polystyrene spheres in measurements of the field versus frequency and investigate its statistics. Its
probability distribution is Gaussian at all frequencies with a variance which is nearly equal to the ensemble
average of the phase. These results are consistent with our observation that the correlation function of the phase
derivative with the ensemble average value of the phase is nearly the same exponential function for diffusing
waves over a wide frequency range. Finally, we indicate ways in which the study of the cumulative phase can
elucidate wave transport in random systefi®l063-651X97)12508-9

PACS numbgs): 41.20.Jb, 05.46:j, 71.55.Jv

. INTRODUCTION 3 to 26 GHz. The sample of length=110 cm is contained
within a 7.6-cm-diam copper tube. The incident wave is
Large fluctuations in optical and electronic properties ofemitted using a broadband horn peaked at 18 GHz and the
statistically equivalent realizations of a random medium araransmitted field is picked up with a wire antenna at the
a consequence of interference and reflect the essential rofgitput surface. Calibration of the instrument at the input sets
played by the phase in mesoscopic phys$its4]. Recently  the phase reference. Measurementk @ind ¢, , from 18.8
the fascinating topological structure of phase maps has bead 19.0 GHz for a single configuration are shown in Fig. 2.
investigated 5—7], but the statistics of the total phageat a  Data are taken at frequency intervals of 625 kHz. The phase
point and its frequency dependence in an ensemble of rammodulo 27 is generally seen to increase with frequency in a
dom systems has not been studied. This may be because tpecewise fashion.
distribution of the phase modulcrZin the fieldE exp(¢,.), In a multiply scattering medium, the complex field at a
which is the phase that is ordinarily measured, is flat in thegiven observation point may be expressed as the sum over all
interval [ — 7, + 7r] for diffusive waves. This is seen in the partial waves emanating from the sourdeg'¢=3p e'¢«
probability distribution shown in Fig. 1 ob,, for micro-  where e, is the phase accumulated along the wave path
wave radiation transmitted through the random polystyreneindp,, its magnitude. The cumulative phase of the resulting
sample described below. Another reason the phase has nfaéld can be expressed gs= ¢,,+ 2n7, wheren is an in-
been extensively investigated is that the ensemble average @fger. This integer can be determined by following the phase
the field decays rapidly as the sample thickness is increasegbllup starting from low frequencies where the phase ap-

As a result, studies of wave propagation in random medigroaches zero. Measurements are made using frequency in-
have focused on the magnitude of the fiEldr on its square,
the intensity, rather than on the phase. Here we show that the
total phase accumulated by the wave in traversing the me 0.20 ——————1——r—— L
dium [8] is a rich statistical quantity which is central to the 1 |
understanding of wave transport in random systems. W M
present measurements of the frequency dependence of t 15[
average phase, its probability distribution, and the correlatiol
function of the phase derivative for microwave radiation
transmitted through random media. These studies allow us1 & " 1
. . . 3. 010 —
explain the relationship of the ensemble average value of th .= I |
phase to its variance. We then outline some of the ways il & - q
which ¢ reflects wave dynamics and the density of states ir i
random systems. 0.05 |- n

II. EXPERIMENTAL PROCEDURE

OOO 1 i L L ! L 1 L ) ) 1 ) 1 ! 1 L

The phase of microwave radiation transmitted through ¢ -7 T
sample of randomly positioned 1/2-inch polystyrene sphere Pon
at a volume filling fraction of 0.52 is measured using a
Hewlett-Packard 8722C network analyzer as it is swept from FIG. 1. Probability distribution ofp modulo 2.
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FIG. 2. Measurements dfa) the field magnitude andb) its N A — A
phase modulo 2 for a single sample configuration. The line r {“' ]
through the data is present as a guide to the eye. 6000 |- Vall

[ P
crements which are small enough that the change in the me N’U\ kf_,«f"

sured phaseg,, is generally much less thanr rad. © 4000 L /"" |

Occasional large jumps i@, of up to == rad are ob- ~ L -

served when phase singularities in the speckle pattern, ass “s L T

ciated with a zero of the fielfb—7], sweep past the detector 5 i //

as the frequency increases. A jumpdn,_., which is equal to Z 2000 i

+a rad within the uncertainty of measurements, would give

rise to an indeterminacy in the cumulative phf8g/] but is

never observed.

— i i H . | . . | . A A ] .

The zero ofe occurs at frequency=0. Thls.p0|nt.|s 0 5950 7050 5050
estimated by extrapolating the phase measured in the interv © (¢) (rad)

C

between 3 and 6 GHz to zero frequency. New sample cor
figurations are created after each spectrum is taken by rotat-

ing the copper tubg]. FIG. 3. (a) Variation of the ensemble average cumulative phase

(¢) for an ensemble of 581 configurations from 6 to 26 GHpy.
Fluctuations of the phase from its ensemble average valge, ¢
—(¢), for three different configurationgc) Dependence of the
variance in cumulative phase upon the ensemble average cumula-

Following the procedure outlined above, we construct theive phase.
total phase accumulated for each of 581 configurations mea-
sured from 6 to 26 GHz and obtain the average over thesef the variance of the phase vaif( upon its averagege) is
configurations shown in Fig.(8). The fluctuations of the shown in Fig. 8c).
phase from its ensemble average valde=¢— (), are The field is a random variable representing the sum over a
shown in Fig. 8b) for three configurations. The dependencelarge number of partial waves with random phases. To ex-

Ill. RESULTS AND DISCUSSION
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FIG. 4. Probability distribution ofé(v)= d¢(v)/o(v) calcu- FIG. 5. Normalized cumulant correlation functi@{Ax) of the
lated at each frequend§rom 6 to 26 GH2 for every configuration.  phase derivative with average phaséor 15 intervals correspond-
The line through the data is a fit of a Gaussian to the data. This fiing to frequencies running from 11.47 to 25.15 GHz. A semiloga-
gives a standard deviation of 0.998. rithmic plot of Cg(Ax) is shown in the inset.

amine the character of the distribution of cumulative phaseFhe symbol( ) represents the average over configurations
resulting from this phasor sum, we compute the probabilityand( ); the average over within theith interval. The result
distribution P(¢), using the cumulative phase measured afor 15 intervals(i from 5 to 19 corresponding to frequencies
each frequencyfrom 6 to 26 GHz for every configuration.  running from 11.47 to 25.15 GH4s shown in Fig. 5. The
This probability distribution is presented in Fig. 4 on a singleinset in the figure gives a semilogarithmic plot ®ffor in-
plot in terms of the variabl&(v) = d¢(v)/o(v), wherea  tervali=18. The plots of the correlation function overlap to
=[var(e)]*% A Gaussian fit to the measured probability a significant extent. At lower frequencies=(1—4) the dif-
distributionP(¢) gives the solid line through the data shown fusive regime is not completely established and the corre-
in Fig. 4 with standard deviation 0.998. sponding plots of the correlation function do not overlap.
In order to understand this result, we consider the cumu€hanges in the correlation function which develop at higher
lant correlation function of the phase derivative. The underfrequencies are the sources of the deviation from the linear
lying character of fluctuations in the phase is revealed in gelationship between the variance and average of the phase
way that may be independent of frequency range and samplgeen in Fig. &). The half width of the correlation function is
characteristics when we change variables from the frequencyx= 0.5 rad. Because the degree of correlation of the phase
v to x=(¢(»)), the average increment in the cumulative derivative exhibits a rapid decay with an exponential tail, the
phase. We take the increment from the valuéofv)) at 6  cumulative phase at a given frequency is essentially a sum
GHz, which is the lowest value of the frequency in the fieldover a large number of statistically independent increments.
spectra measured in this study of fluctuations in the phaserhe Gaussian distribution @ shown in Fig. 4, obtained by
This mapping is allowed becauée(v)) is a monotonically sampling over configuration and over frequency, is thus a
increasing function of frequency. The new variableuns  consequence of the central limit theorem.
from O to 6425 rad for the frequency range 6—26 GHz. This When a correlation functiol€(Ax) falls more rapidly
range of phase change is divided into 20 identical phase irthan (Ax) "%, the variance of the increment iover some
tervals. This is small enough for the statistical process to beange is proportional ta over a frequency range in which
stationary but large enough that the quality of the statistics ishe correlation function is stationaf{t0]. Only the constant
improved when we average over both sample configurationgf proportionality between the variance aads modified by
and overx within a given interval. The comparison of the the correlation function. Thus, the nearly linear variation of
cumulant correlation functions in different frequency rangesvar(¢) with {(¢), seen in Fig. &) for much of the frequency
is facilitated by considering the normalized correlation func-range investigated, is related to short range of the correlation
tion. Writing the phase derivative @ =de/dx and noting  function of the phase derivative with average phase shift and
that (¢")=1, we express the normalized cumulant correla-to the independence of the correlation function upon the fre-
tion function of the phase derivative within theith interval  quency rang¢10].

as follows: The slope of the variation of vap) with (¢) is related to
the range of the correlation function. This is seen by consid-
Ci(AX)={(AX)A(X+AX));), (1) ering the variance op at a specific value o, X:
where

X 2
Var(¢(X))=<|¢(X)—X|2>=<fO dx ¢’ (x)—1] >
AX)=[¢'(x)—11/{[¢'(x)—1]%). 2



3622

0.

0.

58

P. SEBBAH, O. LEGRAND, B. A. van TIGGELEN, AND A. Z. GENACK

1.5

561 %

a1
ot

(0.46) x [A(x)dx
o

var(de/d{g))

0.504 LI I 3
]
t
| 0.48+ 3
B i A 1
o5 il : !’ ik A h‘ i 0. 461 4+
i | “‘" el ‘ ‘\ 5 7 s 11 13 15 17 19
I Interval number i
0.0 PN I SO SR S AT S S T SR R ST ST S S SN
2000 3000 4000 5000 FIG. 7. The integral over the average phase of the correlation
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the product of the average variance of the phase derivative and the
ur_1orma|ized correlation function. The error bars take into account
the uncertainty in the integral of the correlation function in view of
the noise as seen in the inset of Fig. 5.

FIG. 6. The variance of the phase derivative vs average cum
lative phase.

The RHS of Eq(2) can be expressed in terms of the cumu-

lant correlation function C(x,Ax)={[¢'(x)—1][ ¢’ (x
+Ax)—1),) of the phase derivative without the normaliza-
tion factor used in Eq(l):

The results for 15 intervals froin=5-19 GHz are plotted in
Fig. 7. We find that the integral of the phase derivative cor-
relation function is nearly constant with an average value
over the frequency ranges considered of 0.50. As a result we
0 X find that, for our sample,
Val’(go)=J d(Ax)f C(x,Ax)dx
X ~ax vaf (X)]=X, (6)
in good agreement with Fig(&. A linear fit of the results in
Fig. 3(c) gives vargp)=1.01x for x<<5000 with somewhat
larger values for the prefactor for higher valuesxofThe
discrepancy may be the result of contributions to the integral

X X—AX.
+fo d(Ax) fo C(x,Ax)dx. 3

The results in Eq(3) can be put into a particularly simple

form whenC is independent of frequency range. Since Weg tha correlation function in Fig. 5 for values afx greater
have already seen in Fig. 5 that is independent of fre-  han those for which the correlation function was above the
quency rangeC will be independent of frequency range as poise.
long as varf’) is. In Fig. 6 we plot varg’) for the 15
intervals for which data are shown in Fig. 5. The fluctuations
in the figure are a result of the noise in computing the aver-
age for 581 configurations. We find that the average value of The significance of the cumulative phase is seen by con-
var(e') is 0.46 in each of the frequency ranges. Thereforesidering some of the ways it enters into a description of wave
C(x,Ax) and C(x,Ax) are proportional. As a resulff is transport in random media. The derivative of the phase with
independent ok. We have then angular frequency provides a convenient window on wave
dynamics in random media. We expect that the dwell time of
a narrow bandwidth pulse centered at the carrier frequency
incident in one channel and emerging from another channel
is equal todp/dw at w for the field in the outgoing channel.
4) Thus the nearly linear increase @) seen in Fig. &) re-
flects a nearly constant average passage time for the wave.
This can be understood by considering the dwell time in our
strongly absorbing sample, the length of which is longer than
the absorption length,>L,, whereLa=Dr,, D is the
5) diffusion constant and-, the absorption timg12]. In this
case, the average transit time is proportional to the product of
_ _ the transit time through one absorption IengIEV,D, and the
BecauseC falls off rapidly, the integralf3C(Ax)d(AX) number of absorption lengths in the samplél .. Thus,
does not depend upon the upper limit and is a constant ind6{~r>~LLa/D~L\/m, Measurements in this sample have
pendent ofX. Thus, vafe(X)] is_proportional toX. The  shown thatr, and D happened to be proportional over a
value of the integral in Eq(5) of C(Ax) in any interval is  broad frequency rangd 1]. Thus the linear behavior dfp)
obtained by multiplying the integral of the correlation func- with frequency is a consequence of the properties of this
tion in Fig. 5 by the average value of var() in that interval.  particular system.

IV. CONCLUSION

var[go(X)]=f_oX(XJrAx)E(Ax)d(Ax)

X ~
+f (X=AX)C(Ax)d(AX).
0
SinceE(—Ax)za(Ax), we have

var[<p(X)]=2xfOXE(Ax)d(Ax).
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The integrated energy within the sample due to an excisample. The cumulative phase is a key statistical parameter
tation of a particular incident channel is proportional to thewhich, despite the complexity of the interference process,
dwell time for that channel. Thus, the density of states withinallows a statistical study of wave dynamics and can be used

the sample, which is proportional to the volume integral ofto determine the density of states in random media.
the intensity within a medium in which all incident channels

have equal energy, is proportional to the sum over all input
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